1,869 research outputs found

    Lateral prefrontal cortex activity during cognitive control of emotion predicts response to social stress in schizophrenia

    Get PDF
    LPFC dysfunction is a well-established neural impairment in schizophrenia and is associated with worse symptoms. However, how LPFC activation influences symptoms is unclear. Previous findings in healthy individuals demonstrate that lateral prefrontal cortex (LPFC) activation during cognitive control of emotional information predicts mood and behavior in response to interpersonal conflict, thus impairments in these processes may contribute to symptom exacerbation in schizophrenia. We investigated whether schizophrenia participants show LPFC deficits during cognitive control of emotional information, and whether these LPFC deficits prospectively predict changes in mood and symptoms following real-world interpersonal conflict. During fMRI, 23 individuals with schizophrenia or schizoaffective disorder and 24 healthy controls completed the Multi-Source Interference Task superimposed on neutral and negative pictures. Afterwards, schizophrenia participants completed a 21-day online daily-diary in which they rated the extent to which they experienced mood and schizophrenia-spectrum symptoms, as well as the occurrence and response to interpersonal conflict. Schizophrenia participants had lower dorsal LPFC activity (BA9) during cognitive control of task-irrelevant negative emotional information. Within schizophrenia participants, DLPFC activity during cognitive control of emotional information predicted changes in positive and negative mood on days following highly distressing interpersonal conflicts. Results have implications for understanding the specific role of LPFC in response to social stress in schizophrenia, and suggest that treatments targeting LPFC-mediated cognitive control of emotion could promote adaptive response to social stress in schizophrenia

    The neural basis of theory of mind and its relationship to social functioning and social anhedonia in individuals with schizophrenia☆

    Get PDF
    Theory of mind (ToM), the ability to attribute and reason about the mental states of others, is a strong determinant of social functioning among individuals with schizophrenia. Identifying the neural bases of ToM and their relationship to social functioning may elucidate functionally relevant neurobiological targets for intervention. ToM ability may additionally account for other social phenomena that affect social functioning, such as social anhedonia (SocAnh). Given recent research in schizophrenia demonstrating improved neural functioning in response to increased use of cognitive skills, it is possible that SocAnh, which decreases one's opportunity to engage in ToM, could compromise social functioning through its deleterious effect on ToM-related neural circuitry. Here, twenty individuals with schizophrenia and 18 healthy controls underwent fMRI while performing the False-Belief Task. Aspects of social functioning were assessed using multiple methods including self-report (Interpersonal Reactivity Index, Social Adjustment Scale), clinician-ratings (Global Functioning Social Scale), and performance-based tasks (MSCEIT—Managing Emotions). SocAnh was measured with the Revised Social Anhedonia Scale. Region-of-interest and whole-brain analyses revealed reduced recruitment of medial prefrontal cortex (MPFC) for ToM in individuals with schizophrenia. Across all participants, activity in this region correlated with most social variables. Mediation analysis revealed that neural activity for ToM in MPFC accounted for the relationship between SocAnh and social functioning. These findings demonstrate that reduced recruitment of MPFC for ToM is an important neurobiological determinant of social functioning. Furthermore, SocAhn may affect social functioning through its impact on ToM-related neural circuitry. Together, these findings suggest ToM ability as an important locus for intervention

    Motivational interviewing with parents of overweight children: Study design and methods for the NOURISH+MI study

    Get PDF
    There is an urgent need for innovative approaches to pediatric obesity treatment. There is also a demand for targeted strategies that reduce attrition and improve treatment adherence. Intervening exclusively with parents of overweight children is a novel approach with demonstrated efficacy in reducing child body mass index (BMI) percentile. Motivational interviewing (MI), a brief communication style for exploring and resolving ambivalence about behavior change, might enhance treatment engagement when implemented as part of obesity interventions. The aim of this report is to provide the rationale and methods for a novel study of MI with parents in the treatment of their children’s overweight. We designed and are currently implementing NOURISH+MI, a randomized controlled trial examining the feasibility and efficacy of an adjunct values-based MI intervention, implemented within a culturally-tailored parent intervention for overweight children ages 5-11 years, NOURISH+ (Nourishing Our Understanding of Role modeling to Improve Support and Health). Specifically, we are randomly assigning 60 parents to this adjunctive treatment, and investigating if adding two MI sessions prior to the NOURISH+ group intervention will enhance treatment effects. We will be able to compare NOURISH+MI participants with those from the two NOURISH+ treatment conditions (NOURISH+ and control). We hypothesize that children whose parents participate in NOURISH+MI will demonstrate lower attrition and greater adherence with NOURISH+, ultimately leading to greater treatment effects, compared with children whose parents are randomized to NOURISH+ or a control group. Findings will contribute to the emerging literature examining the efficacy of MI within pediatric obesity interventions

    The Extragalactic Distance Scale Key Project XXVII. A Derivation of the Hubble Constant Using the Fundamental Plane and Dn-Sigma Relations in Leo I, Virgo, and Fornax

    Full text link
    Using published photometry and spectroscopy, we construct the fundamental plane and D_n-Sigma relations in Leo I, Virgo and Fornax. The published Cepheid P-L relations to spirals in these clusters fixes the relation between angular size and metric distance for both the fundamental plane and D_n-Sigma relations. Using the locally calibrated fundamental plane, we infer distances to a sample of clusters with a mean redshift of cz \approx 6000 \kms, and derive a value of H_0=78+- 5+- 9 km/s/Mpc (random, systematic) for the local expansion rate. This value includes a correction for depth effects in the Cepheid distances to the nearby clusters, which decreased the deduced value of the expansion rate by 5% +- 5%. If one further adopts the metallicity correction to the Cepheid PL relation, as derived by the Key Project, the value of the Hubble constant would decrease by a further 6%+- 4%. These two sources of systematic error, when combined with a +- 6% error due to the uncertainty in the distance to the Large Magellanic Cloud, a +- 4% error due to uncertainties in the WFPC2 calibration, and several small sources of uncertainty in the fundamental plane analysis, combine to yield a total systematic uncertainty of +- 11%. We find that the values obtained using either the CMB, or a flow-field model, for the reference frame of the distant clusters, agree to within 1%. The Dn-Sigma relation also produces similar results, as expected from the correlated nature of the two scaling relations. A complete discussion of the sources of random and systematic error in this determination of the Hubble constant is also given, in order to facilitate comparison with the other secondary indicators being used by the Key Project.Comment: 21 pages, 3 figures, Accepted for publication in Ap

    The Hubble Space Telescope Key Project on the Extragalactic Distance Scale XXIV: The Calibration of Tully-Fisher Relations and the Value of the Hubble Constant

    Get PDF
    This paper presents the calibration of BVRIH$ Tully-Fisher relations based on Cepheid distances to 21 galaxies within 25 Mpc, and 23 clusters within 10,000 km/s. These relations have been applied to several distant cluster surveys in order to derive a value for the Hubble constant, H0, mainly concentrating on an I-band all-sky survey by Giovanelli and collaborators which consisted of total I magnitudes and 50% linewidth data for ~550 galaxies in 16 clusters. For comparison, we also derive the values of H0 using surveys in B-band and V-band by Bothun and collaborators, and in H-band by Aaronson and collaborators. Careful comparisons with various other databases from literature suggest that the H-band data, whose magnitudes are isophotal magnitudes extrapolated from aperture magnitudes rather than total magnitudes, are subject to systematic uncertainties. Taking a weighted average of the estimates of Hubble constants from four surveys, we obtain H0 = 71 +- 4 (random) +- 7 (systematic) km/s/Mpc. We have also investigated how various systematic uncertainties affect the value of H0 such as the internal extinction correction method used, Tully-Fisher slopes and shapes, a possible metallicity dependence of the Cepheid period-luminosity relation and cluster population incompleteness bias.Comment: 34 pages, 13 figure

    How many steps/day are enough? For older adults and special populations

    Get PDF
    Older adults and special populations (living with disability and/or chronic illness that may limit mobility and/or physical endurance) can benefit from practicing a more physically active lifestyle, typically by increasing ambulatory activity. Step counting devices (accelerometers and pedometers) offer an opportunity to monitor daily ambulatory activity; however, an appropriate translation of public health guidelines in terms of steps/day is unknown. Therefore this review was conducted to translate public health recommendations in terms of steps/day. Normative data indicates that 1) healthy older adults average 2,000-9,000 steps/day, and 2) special populations average 1,200-8,800 steps/day. Pedometer-based interventions in older adults and special populations elicit a weighted increase of approximately 775 steps/day (or an effect size of 0.26) and 2,215 steps/day (or an effect size of 0.67), respectively. There is no evidence to inform a moderate intensity cadence (i.e., steps/minute) in older adults at this time. However, using the adult cadence of 100 steps/minute to demark the lower end of an absolutely-defined moderate intensity (i.e., 3 METs), and multiplying this by 30 minutes produces a reasonable heuristic (i.e., guiding) value of 3,000 steps. However, this cadence may be unattainable in some frail/diseased populations. Regardless, to truly translate public health guidelines, these steps should be taken over and above activities performed in the course of daily living, be of at least moderate intensity accumulated in minimally 10 minute bouts, and add up to at least 150 minutes over the week. Considering a daily background of 5,000 steps/day (which may actually be too high for some older adults and/or special populations), a computed translation approximates 8,000 steps on days that include a target of achieving 30 minutes of moderate-to-vigorous physical activity (MVPA), and approximately 7,100 steps/day if averaged over a week. Measured directly and including these background activities, the evidence suggests that 30 minutes of daily MVPA accumulated in addition to habitual daily activities in healthy older adults is equivalent to taking approximately 7,000-10,000 steps/day. Those living with disability and/or chronic illness (that limits mobility and or/physical endurance) display lower levels of background daily activity, and this will affect whole-day estimates of recommended physical activity
    corecore